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Abstract

Capture the Flag (CTF) is a popular computer security
exercise in which teams compete one against the other
to attack and/or defend programs in real time. CTFs are
currently expensive to build and run: each is a bespoke
affair, with challenges and vulnerabilities crafted by ex-
perts. This limits both educational value for players and
what researchers can learn from them about the human
activities such as vulnerability discovery and exploita-
tion. In this work, we take steps towards making CTFs
cheap and reusable by extending our LAVA bug injec-
tion system to add exploitable vulnerabilities, enabling
rapid generation of new CTF challenges. New LAVA
bug types, including a memory corruption and an ad-
dress disclosure, form a sufficient set of primitives for
program exploitation in most cases. We used these tech-
niques to create AutoCTF, a week-long event involving
teams from four universities. For evaluation, we con-
ducted surveys and semi-structured interviews after the
event to understand how AutoCTF differed from a hand-
made CTF, assessing not only challenge realism and dif-
ficulty but also the relative effort expended on bug find-
ing and exploit development. Our preliminary results in-
dicate that AutoCTF can form the basis for cost-effective
and reusable CTFs, allowing them to be run often and
easily to train new generations of security researchers as
well as provide empirical data on human vulnerability
discovery and exploit development.

1 Introduction

There are over one hundred active CTFs listed on CTF
website ctftime.org, a testament to the popularity of
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the activity. Despite the fact that one could apparently
play in two a week given this abundance, we would argue
this is too few. One problem is variance. No two events
are alike, with different flavor, emphasis, and quality.
This means it is difficult to use them to train in a fo-
cused area. Another issue is that CTF contests are high-
profile events and are partly interpreted as a showcase of
the organizers’ talents. Thus, challenge writers are un-
derstandably biased towards creating something totally
new—on our past CTF teams, the water-cooler or bar-
room conversation after an event has indeed mostly fo-
cused on the novelty of the puzzles. These forces seem
at odds with educational goals, which require repeated
practice of core skills.

Nevertheless, CTFs are touted as potentially powerful
education and training vehicles [10, 22, 6, 8, 2, 1]. We
hypothesize, perhaps controversially, that the top CTFs
(DEF CON, Boston Key Party, PlaidCTF, etc.) might not
actually be very educationally useful. Rather, they are
built to evaluate the relative performance of CTF teams
and players. That is, CTFs are baseball games, with DEF
CON finals as the World Series. But there isn’t currently
a clear CTF analogy to Spring Training or even the reg-
ular practices of a high school baseball team.

Our aim is to fill this gap with a kind of CTF that is
cheap to run and re-run and that is easily configurable
with respect to both difficulty and topic. These CTFs will
unabashedly reuse the same base applications over and
over again to focus attention on vulnerability discovery
and exploitation. We make this choice because it allows
for reuse, but we note that it can also be justified on re-
alism grounds: practical vulnerability discovery mainly
deals in established programs like Firefox and OpenSSL
which have been around for years and see frequent up-
dates.

We present AutoCTF, a first step toward reusable, au-
tomatically generated CTFs. The basic idea of AutoCTF
is to assemble a stockpile of applications into which we
can repeatedly inject a handful of exploitable bugs of
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known types to create a sequence of fresh CTF com-
petitions. The bugs will be in different places and thus
both vulnerability discovery and exploitation will re-
quire new effort and even different knowledge and tech-
niques. We use the LAVA bug injection system [11],
developed under previous work, extending it to be able
to insert exploitable bugs of a few key types. These
bugs were added to two base programs, one a souped-
up echo server, and the other a simplified stack based
interpreter. This resulted in four auto-generated chal-
lenge programs which we supplemented with four ver-
sions with manually-inserted bugs. AutoCTF ran for a
week, during which new challenges were made available
each day to teams from four competing universities. The
task was to figure out how to exploit the buggy program
in order to exfiltrate a flag from a known place on the file
system. Four of the eight challenges were solved by the
top scoring team.

2 Background

2.1 Capture the Flag
Capture the Flag competitions have been a popular event
for over 20 years. In the most general terms, a CTF is a
competition in which teams or individuals compete to ac-
complish some security-relevant goal; upon accomplish-
ing that goal they receive a flag (usually a hard-to-guess
string) that can be submitted as proof to the competition
organizers.

CTFs are usually divided into two types: attack-
defense, in which teams run services on a shared network
and compete to compromise or disrupt others’ services
while keeping their own services available, and jeopardy-
style CTFs, in which teams solve puzzle-like challenges.

The puzzles in jeopardy-style CTFs come in many dif-
ferent flavors; some common types are:

Reverse Engineering Obfuscated programs that must
be reverse engineered to reveal a flag.

Pwnables Intentionally vulnerable programs that can be
exploited to obtain a flag.

Crypto Weak or poorly implemented cryptography;
generally the flag is hidden in an encrypted message
that must be decrypted.

Web A web site with some kind of vulnerability (e.g.,
SQL injection or cross site scripting) that can be ex-
ploited to reveal a flag.

These categories are not comprehensive but they pro-
vide a sense of the range of challenges that are avail-
able. AutoCTF focuses on just one of these categories,
pwnables, by injecting exploitable vulnerabilities into a

small source program. Since many different vulnerabil-
ities can be added to a given program, this allows many
substantially different challenges to be created from the
same initial program.

Although CTF challenges are fun, engaging and gen-
erally thought to be a good vehicle for cybersecurity ed-
ucation, they are currently very expensive in terms of
human time and effort that must be expended. Creat-
ing a good pwnable involves many labor-intensive steps:
one must write a small program that contains an inten-
tional vulnerability (and, ideally, no other bugs), assess
its difficulty, create a sample solution, and test it to make
sure the creator’s assessment of the challenge difficulty
is roughly correct. All of these steps take time and, more
importantly, expertise.

To get a sense of the cost (in US dollars) of chal-
lenge creation, we examined the contracts awarded by
DARPA to create challenges for the Cyber Grand Chal-
lenge (CGC). In particular, after consulting with one of
the CGC organizers, we focused on the contract [13]
awarded to Kaprica Security, Inc, since the other contrac-
tors performed additional tasks beyond challenge cre-
ation. Since Kaprica was awarded $1.9 million and cre-
ated 121 challenges for CGC, we can roughly approxi-
mate the cost of a challenge at about $15,000. The au-
thors’ own estimate for the cost to create an 8-challenge
CTF, the 2013 MIT LL CTF [10], is even higher. Chal-
lenges for this event and others based on the same infras-
tructure cost about $25,000 each to design, implement,
and test. The reason for this higher cost is that these
were attack-defend CTFs, which have more complicated
moving parts to get working correctly.

The high cost of challenge creation is usually hid-
den, as many challenges are created by expert volun-
teers in their spare time.1 Unfortunately, this means
that organizations with less expertise and resources (or
fewer connections) find it difficult to hold CTF compe-
titions. In addition, competitors often produce write-ups
of their solutions, so challenges can rarely be reused be-
tween events. These factors mean that controlled, fo-
cused CTFs cannot currently be run at the scale or fre-
quency that we might wish.

2.2 LAVA
A cheap and plentiful source of bugs in programs is not
only useful for CTF competitions; these automatically
generated corpora can also be used to evaluate and com-
pare automated bug-finding techniques such as fuzzers,
symbolic execution engines, and static analysis tools. In
prior work [11], we built a system for Large-scale, Auto-

1For example, challenges for the NYU-run CSAW finals are created
partly by students and partly by soliciting challenges from experts in
the security industry.
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unsigned int lava_val = 0;

void foo(FILE *f) {

char x[16];

fread(x, 16, 1, f);

// DUA

lava_val = *(unsigned int *)(&x + 4);

}

...

void bar(char *baz) {

printf("Value is %s\n",

// Attack point

baz + lava_val

* (lava_val == 0x6176616c));

}

Figure 1: An example of a bug inserted by our original
LAVA system. Although it is obvious that the pointer
baz will go out of bounds when the trigger condition is
met, it is highly unlikely the bug will be exploitable.

mated Vulnerability Addition (LAVA). LAVA adds mem-
ory corruption bugs to C source code; each bug generated
comes with a triggering input that serves as proof that the
bug is real. Because AutoCTF builds on LAVA, we will
briefly describe the system and its capabilities and limi-
tations here.

LAVA begins with a C source program and an input
to that program. In order to add bugs to the program, it
finds portions of the input that are currently unused and
can be subverted to cause memory corruption errors in
the program. This data must be Dead (i.e., it does not in-
fluence control flow), Uncomplicated (not significantly
modified from the input), and Available somewhere in
the program; we call such data a DUA. DUAs can then be
used to trigger memory safety violations anywhere along
the path the program takes on the original input. The
site where a DUA is used to trigger a bug is called an
attack point; in its original form, LAVA attacked pointer
arguments to functions by adding the DUA to the pointer
value to cause it to go out of bounds. The pointer addi-
tion is guarded by a comparison with a trigger value so
that the bug only manifests for a single, precisely cho-
sen input. An example of a bug injected by the original
LAVA system can be seen in Figure 1.

3 Approach

3.1 Injecting Exploitable Bugs
In the first iteration of the LAVA system, the injected
bugs would reliably crash the program (by corrupting
pointers) but were not exploitable. Modifying LAVA
to be able to inject CTF challenges that are exploitable

data_flow[0] = *(unsigned int *)input;

char *ip = ...;

...

if (0x54494246 == data_flow[0]) {

__asm__(

"mov %0, %%rsp \n"

"ret"

: : "rm" (ip));

}

Figure 2: Example of direct stack pointer corruption

data_flow[0] = *(unsigned int *)ip;

...

data_flow[1] = *(unsigned int *)input;

...

data_flow[2] = *(unsigned int *)ip2;

...

string[string_pos

+ (0x52544144 == data_flow[0])

* data_flow[1]]

= *ip

+ (0x52544144 == data_flow[0])

* data_flow[2];

Figure 3: Example of controlled relative memory write

was a significant effort. We needed to introduce new bug
types that would allow memory corruption, and also in-
formation leaks to allow bypassing of library ASLR.

For each vulnerability hypothesized by LAVA, we
manually analyzed the corresponding source code
change to determine if the resulting program was or was
not exploitable. To ease this analysis, we stored details
about each insertable bug in a SQL database. The LAVA
user could then select a particular bug to insert based on
any criteria they chose, from source line number distance
to observed temporal distance in the original trace.

We added two types of program state corruption bugs:
direct stack pointer corruption (Figure 2) and controlled
relative memory writes (Figure 3). The first type allows a
user of the modified program to pivot the stack pointer to
a user-controlled buffer. The second allows them to write
user-controlled bytes to a user-controlled offset from an
existing pointer in the program, typically on the stack or
the heap. Additionally, we added a leak of a variable
address enabling ASLR bypass (Figure 4).

Unfortunately, the clang tooling infrastructure that
LAVA is based on is not built for synthesizing complex
additions to the abstract syntax tree, making it difficult
to prescribe the injection pattern for a new class of bug.
To address this problem, a key element of the modifica-
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data_flow[0] = *(unsigned int *)keystart;

...

printf("RECALL %lu %s %lu %s\n",

key->len,

key->str,

(0x59465567 == data_flow[0])

? &(recall->len)

: recall->len,

recall->str);

Figure 4: Example of leaking a heap address

tions to LAVA is an embedded domain-specific language
(DSL) in our C++ code (Figure 5) allowing rapid con-
struction of new source code changes. This small bit of
engineering has made it much easier to stitch together
existing source code variables with new code such as the
expressions in Figure 3.

3.2 Natural Dataflow
LAVA bugs require access to the DUA at the attack point
in order to compare the DUA with a magic value and
trigger the bug. Because the DUA may not be in scope
at the attack point, LAVA must introduce some form of
dataflow to make the DUA or a copy of it available at the
time it is needed. As shown in Figure 1, the first iteration
of LAVA accomplished this by copying the DUA into
a global variable lava_val and accessing lava_val at
the attack point. In order to support multiple bugs in
the same program, this approach was extended to use a
global array where each entry functioned as a lava_val
for a different bug. To allow injecting bugs into dynamic
shared objects, we added helper methods lava_set and
lava_get, which copy and read the DUA’s value to and
from the global array.

We were concerned that a hypothetical attacker could
identify LAVA bugs by focusing solely on calls to these
helper functions and bypass analyzing the rest of the pro-
gram. To address this issue, we developed an approach
that better integrated LAVA’s dataflow with the original
program: In the program’s main function, we declare an

LIf(MagicTest(bug).render(), {

LAsm({ UCharCast(

LStr(buffer->ast_name)) +

LDecimal(buffer->selected.low) },

{ "mov %0, %%rsp", "ret" }

)

})

Figure 5: LAVA injection DSL code for bug in Figure 2

integer array called data_flow. We then modify all non-
library function signatures to include an additional first
argument of int* data_flow, and modify all function
calls to include a pointer to the data_flow array as a first
argument. Finally, as shown in Figure 2, Figure 3, and
Figure 4 we modify the injected code at the DUA-site to
copy the DUA into the data_flow array and modify the
injected code at the attack point to reference this array
instead of calling lava_get. This approach eliminates
the need for a global data structure and the lava_get

and lava_set helper functions.

3.3 Chaff Bugs

Releasing multiple versions of a program with different
injected bugs can easily fall victim to binary compar-
ison tools, which try to identify changes between two
versions of a binary. The problem stems from the fact
that our injected code is small when compared to the rest
of the program’s codebase, so comparison quickly yields
the injected code. Using differential analysis to discover
bugs is a well known technique [12] and several tools
have been developed to facilitate this [23]. To prevent
this easy win we inject chaff bugs into the targets before
releasing them.

For this chaff, we use non-exploitable LAVA bugs of
the type depicted in Figure 1 injected into random points
in the program. Our non-exploitable bugs are still reach-
able via specially crafted inputs and still crash the pro-
gram by causing it to dereference unmapped memory.
Because these bugs are reachable, an attacker must con-
sider the exploitability of each bug individually. This
strategy has the additional benefit of preventing attackers
from searching for artifacts left by our system to more
quickly find the bugs; after finding the artifacts, the at-
tacker must still distinguish between real bugs and chaff
bugs.

4 AutoCTF

We designed a week-long Capture the Flag competi-
tion containing eight challenges. Half of these chal-
lenges contained vulnerabilities inserted automatically
by LAVA and half contained vulnerabilities inserted
manually.

Each challenge was hosted in a docker container based
on Ubuntu 16.04. We used CTFd [9] as the scoreboard
system. Challenges were released at 3pm daily from
May 3rd through May 9th as shown in Figure 6 and the
competition ended at 3pm on May 10th.
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4.1 Base Programs

We developed two simple applications in C that were
modified to contain both automatically generated and
manually inserted vulnerabilities. We used xinetd to
connect the services’ input and output to the network.

The first of these services, called blecho, is a
key/value store layered on top of an echo server. For
each line of text sent to blecho, it either stores a value,
loads a value and prints it, or ignores it. Values are stored
in and retrieved from a temporary directory in the filesys-
tem. This program is 239 lines of source code as mea-
sured by David Wheeler’s sloccount.

The second service, fifth, is an interpreter for a
binary-format stack-based programming language sup-
porting basic operations: push, add, print, etc. This pro-
gram is 364 lines long.

4.2 Automated Vulnerability Insertion

Using LAVA, two versions of each service were gener-
ated. One had a controlled relative write bug added and
the other had a direct stack pointer corruption bug added.
These bugs are of the type depicted in Figures 2 and 3,
respectively. Both had leaks (à la Figure 4) added to aid
in defeating address space layout randomization. To pre-
vent competitors from simply comparing different ver-
sions of the services to find vulnerabilities, we also used
LAVA to add different non-exploitable bugs to each pro-
gram (see Section 3.3 for details).

A developer had to create a short configuration file
to run LAVA on blecho and fifth. Once this config-
uration file was built, LAVA automatically generated a
database containing 25937 and 10856 injectable vulner-
abilities in blecho and fifth, respectively. To select a
bug to insert, we queried the database to obtain one of
the desired exploitable type and instantiated that vulner-
ability into source using LAVA. We inspected the result-
ing program to convince ourselves that it should cause
the intended effect without additional unintended side ef-
fects. Finally, to confirm that a vulnerability was indeed
exploitable, we manually created an exploit for all but
one of the challenges before releasing them to competi-
tors. The remaining challenge was solved by the winning
team.

The time required to add enough exploitable bugs and
chaff to a base program as well as vet the output ade-
quately so that it could be used as a challenge was about
an hour. Some parts of this process could be speeded
up, including database bug selection. However, this hour
estimate does not include the time required to verify ex-
ploitability, which was more in the several hours range.
Speeding up this aspect will be a big focus of future ef-
forts. Note, however, that it is common to both auto-

mated and manual bug insertion.

4.3 Manual Vulnerability Insertion

We released four challenges containing vulnerabilities
that were manually inserted into our two base programs,
blecho and fifth.

The first vulnerability inserted into blecho re-
moved logic that prevented keys from containing non-
alphanumeric characters. Since the key was used as a
filename, removing this logic allowed competitors to use
a path traversal attack to read a flag. The second vulner-
ability added to blecho was a controlled relative write,
similar to one of the LAVA generated vulnerabilities, but
with a much smaller range of possible addresses to write
to. This vulnerability allowed corruption of blecho’s
storage directory, which in turn allowed arbitrary file
reads.

The two vulnerabilities inserted into fifth added a
stack overflow and a use-after-free. Exploitation of either
allowed full control of execution.

The time required to manually insert a bug varied from
a few tens of minutes to several hours. This variance is
interesting and is explained by three factors. First, if the
original author of the base program was adding a bug,
this took much less time since that individual already un-
derstood program function, control-flow, and data struc-
tures deeply. Second, if the insertion was very early in
the program execution this was easiest since almost none
of the progam needed to be understood. Third, if the
bug type was to be subtle, involving limited but adequate
control of a pointer that could overwrite sensitive pro-
gram data, then that sort of insertion necessarily required
deep knowledge of the program and took the longest to
get right. By contrast, auto-injected bugs using LAVA,
while not always subtle, were always of the order of an
hour to create.

5 Results

5.1 Event

We ran AutoCTF over the course of a week for four
university security clubs in May of 2017. Three teams
solved at least one challenge, with the winning team
solving four of the eight challenges. Four teams were ini-
tially registered, from four separate universities, but one
team dropped out and, generally, participation was low
due to conflicts with final exams and projects. For future
iterations of AutoCTF, we will choose a better time slot.
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Date Challenge Created by Vulnerability type
May 3 blecho day 1 LAVA Controlled relative write (Figure 3)
May 4 blecho day 2 LAVA Direct stack pointer corruption (Figure 2)
May 6 blecho day 4 Human Path traversal
May 8 blecho day 6 Human Limited controlled relative write
May 3 fifth day 1 Human Stack overflow
May 5 fifth day 3 Human Use-after-free
May 7 fifth day 5 LAVA Controlled relative write (Figure 3)
May 9 fifth day 7 LAVA Direct stack pointer corruption (Figure 2)

Figure 6: Schedule and description of each vulnerability

5.2 Interviews

We interviewed six of the players to get their feedback
on the event. The main conclusion we drew was that the
challenges were probably too difficult for a small event,
as some of the participants were fairly new to the CTF
world.

The participants had somewhat conflicting opinions on
the reuse of base programs. Some said they enjoyed the
repetition, as it meant they could build on their reverse
engineering experience from previous iterations of each
program. Unfortunately, repetition inherently leads to
less variety in challenges, which a few participants dis-
liked. One said that, while the reverse engineering of
each challenge iteration was easier and faster, they did
not enjoy the task of transcribing notes from one IDA
Pro database to another. All said they would play if the
event were held again with different bugs in the same
base programs. It is worth noting that the team with the
most solves seemed to prefer one of the base programs
(fifth), which constituted three of their four solves. In
interviews, it became clear that they had invested a fair
amount of RE in that program and had insufficient re-
sources to spend as heavily on blecho. This seems an
interesting aspect to investigate in future AutoCTFs.

Participants were also split on whether it was more dif-
ficult to find the bugs or to exploit the program. One
player we interviewed, who had significant experience
playing CTFs (he had played in more than 10 events),
thought that due to the base program reuse the diffi-
culty was almost entirely in exploitation, and even sug-
gested it as a way to train exploit development skills
independently from reverse engineering skills. On the
other hand, at least one player was fairly stymied by
the chaff—although he found the injected chaff “fairly
transparent,” he was not able to determine which were
exploitable, and commented that when there are many
crashes but few are exploitable it can be “demotivating.”

One repeated negative comment was that, especially to
a human reverse engineer, the LAVA magic value com-
parisons strongly stand out (Figure 3, line 8). Further,
few teams seemed particularly slowed by chaff bugs; in

interviews they indicated that they were fairly transpar-
ently not exploitable. These LAVA injection artifacts and
deficiencies will be an important area for future work.

5.3 Discussion

These challenges were vastly easier and cheaper (in
terms of time) to create than challenges that some of the
authors had made in past CTFs, although verifying ex-
ploitability still took significant time. While LAVA as-
sists in this effort by generating an input that triggers
the bug, transforming such a crashing input into a work-
ing exploit is always an involved task. Further reducing
exploitability verification time should be possible and is
an ongoing effort. This is an area where CTF exploita-
tion diverges from the real world, as we think that the
ratio between time spent on vulnerability discovery and
exploitation tends more towards discovery in real-world
programs, which are usually much larger than a few hun-
dred lines.

We believe that in the future, given a small stable of
base programs, that we could easily run another Au-
toCTF event with little effort.

In terms of player experience, we found that the chal-
lenges were probably more difficult than we had antic-
ipated. For example, at NYU, we saw 15-20 students
participate on the first day; however, almost all of these
students were very new to CTFs and security in general,
and all but two (who were the most experienced at play-
ing CTFs) dropped out after that first day. One interest-
ing nuance here is that much of the difficulty was in the
exploitation phase. The factors that influence how chal-
lenging a bug is to exploit include things like the size of
the binary (and hence the availability of ROP gadgets)
and what exploit mitigations are turned on. These are
not under the direct control of LAVA right now, and so
for future CTFs we may need to extend the system fur-
ther to exert control over these features and thereby tune
the difficulty more precisely.
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6 Limitations

AutoCTF has three main limitations: vulnerability types,
LAVA-required application source editing, and exploita-
tion difficulty.

The LAVA system, when we began this work, was able
to inject memory corruption bugs. Thus, it is hardly sur-
prising that the class of CTF challenges automatically
created for AutoCTF involves out-of-bounds reads and
writes on the stack and heap. As discussed in Section 3,
controlled pointer writes and printf-based read disclo-
sures were identified as fairly straightforward LAVA bug
type extensions that would nevertheless provide suffi-
cient offensive power for AutoCTF players to practice
modern exploitation techniques. However, this means
other kinds of exploitable bugs, both simple and com-
plicated, are not presently within its repertoire. For in-
stance, LAVA cannot inject any of the following for Au-
toCTF: directory traversal, use-after free, and more gen-
eral read disclosures. These bug types all seem possible
with LAVA, and we have begun to think concretely about
how we might implement them. Other bug types such as
side channels, crypto and logic flaws seem more funda-
mentally out of reach. Our intuition is that this is actually
because they are rather broad and ill defined; implement-
ing an exploitable bug type in LAVA requires a precise
formulation. It is possible that there are specific classes
of bugs within these seemingly trickier categories that
could be part of AutoCTF’s future, once clearly speci-
fied.

LAVA bugs, additionally, are not always injectable in
a freshly written challenge program. One cause for this
is a mismatch between the syntactic constructs recog-
nized by LAVA in terms of Clang’s AST matchers and
those found in the source as written by a programmer.
For instance, LAVA identifies attack points for injecting
exploitable bugs as follows.

1. A memory access attack point is an assignment in
which the left-hand-side is

(a) a pointer dereference such as *p='\0', or

(b) an index into an array such as a[i]=7

2. A printf attack point is a printf call containing
an integer argument, e.g. printf("%d\n", x)

These are the only places in a program source where
LAVA can inject code such that a memory corruption or
information leak can manifest there. If none of these con-
structs appear in a program, LAVA will not find any lo-
cations where it can attempt to add a bug. If a program
doesn’t use arrays or pointers, LAVA can’t add bugs to
it. This means code may have to be partly re-written in
terms of these constructs for it to be usable in AutoCTF.

Additionally, LAVA will be unable to inject bugs into
a program that uses data in such a sparing way that there
are no or too few DUAs. This can be assessed by run-
ning LAVA noting how many DUAs it locates, and then
modifying the program to increase that number. LAVA
locates DUAs as tainted (attacker-controlled) data at par-
ticular points in a program trace that satisfy the following
requirements. A DUA is

1. at least as big as a machine pointer

2. not used to decide many previous branches

3. not a complicated function of input bytes

One can increase the number of DUAs available in a
program only with a detailed understanding of the cur-
rent data flow. For instance, if one knows where data
is first read in, one might introduce additional buffers in
which that data is needlessly stored, and LAVA will find
and use them to create bugs. Note that the number of po-
tential bugs injectable by LAVA is roughly linear in the
product of the number of DUAs and the number of attack
points, so we want to make both numbers large.

The bugs injected by LAVA also currently have an eas-
ily recognizable trigger—a four-byte “magic value”; as
seen in Section 5, several different players noticed this
feature and found it unrealistic. Although our chaff injec-
tion prevented this from being used as a shortcut to figure
out where the exploitable bug was injected, chaff can also
be frustrating to players. We hope to create more natural
triggers in the future by splitting up the comparison into
multiple smaller comparisons, applying transformations
to the DUA before the trigger comparison, and integrat-
ing it more tightly with the program’s existing state and
data structures.

A final limitation of AutoCTF is that, given a LAVA
injected bug, exploitability must be verified manually.
This puts a lower bound on the time to auto-generate a
challenge that is higher than we would like. That is, cre-
ating a new challenge with LAVA might take fifteen min-
utes, but proving that it is exploitable may take several
hours. This situation sees a parallel in AutoCTF game
play, where players observed about an order of mag-
nitude difference between the time to find the bug and
the time to exploit it. Further, note that players usually
chose to exploit LAVA bugs via standard ROP techniques
which entails a fairly lengthy but bounded exploit devel-
opment process. We never observed a player choosing to
exploit LAVA bugs to corrupt application-specific data
such as length fields and directory string contents. This
indicates a bias in players to choose exploit strategies
with known time requirements over investing in under-
standing and exploring a binary to find subtle data attacks
that might be much easier to stage. This is interesting and
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we will would like to frame experiments to measure this
bias in the future. More importantly, we believe, for Au-
toCTF to be viable, we will need to invest in analyses that
speed exploit development. These analyses would lever-
age the advantage that we know the exact input required
to control a LAVA-injected bug and precisely where it
manifests.

7 Future Work

In the future, we would like to explore just how much of
a CTF can be automated, in order to put CTFs within the
reach of as many people as possible. At the same time,
we would like to improve the quality of the automatically
generated challenges and ensure sufficient diversity. We
discuss several areas of study needed to achieve that goal
here, and consider what research might be enabled by
such a system.

7.1 Bug Diversity and Realism
The bugs we inject currently require very few prerequi-
sites for exploitation. This increases the odds that a given
bug will be exploitable, but limits the types of bugs we
can inject. As discussed in the previous section, we be-
lieve that many types of memory safety bugs (both spa-
tial and temporal) are within reach; other bugs, such as
timing channels and cryptographic weaknesses, will re-
quire more fundamental research in order to precisely
specify and add to an existing program. This research
would benefit not only automatically generated CTFs,
but also our ongoing attempts to automatically create
high-quality vulnerability corpora for evaluating bug dis-
covery tools.

LAVA currently produces an input to trigger each bug
it injects, but not an exploit for the bug. Automatically
generating exploits is a studied academic problem [5] but
remains a complex, open-ended task in most cases. With
LAVA we have a simpler problem since we control the
bug we are injecting and can modify the source or bi-
nary code of the program. Given our advantages, LAVA
should be able to provide more assistance to the person
tasked with proving the exploitability of the bug or even
provide the proof (in the form of a working exploit) it-
self.

7.2 Improving Automation
Aside from proving exploitability, we still require human
intervention to create the base programs and to assign
difficulty scores. We believe that even these steps might
be automated, however.

Creating small challenges by hand is not insurmount-
ably difficult, but it does pose some risks: unintended

exploitable bugs introduced in a base program will be
present in every challenge derived from it, which could
allow a large number of problems to be solved in the
same way. Instead of crafting the base programs by hand,
we could trawl GitHub to look for small C programs that
read from stdin and write to stdout. Most such pro-
grams will be too large to be reasonably reverse engi-
neered during a CTF, but we may be able to use tech-
niques such as program slicing [21] to make the pro-
grams a more manageable size. The binary comparison
problem described in Section 3 arises in a different form
here: since the base programs are widely available, par-
ticipants might be able to obtain them and compare them
with our buggy version to locate the added bug. Our
chaff technique should work here as well, but we also
plan to investigate techniques such as binary stirring [20]
to help prevent comparison.

A thornier challenge is difficulty estimation. As ex-
emplified in this CTF, where we inadvertently made
the challenges too hard for novice players, even human
judgement is not always very accurate in estimating the
difficulty of a challenge. Difficulty is also influenced
not only by source-level features of the bug injected, but
by features of the binary program (e.g., the availability
of ROP gadgets) and the runtime environment (e.g., ex-
ploit mitigations such as ASLR). By running more and
larger-scale automatically generated CTF competitions,
we hope to identify features of programs, bugs, and en-
vironments that contribute to the difficulty of an exploita-
tion challenge and use those features to automatically as-
sign point values to the generated challenges.

7.3 Researching Human Vulnerability Dis-
covery

Although automated tools have made great strides in re-
cent years [3], humans still hold an advantage when it
comes to finding deep, subtle vulnerabilities. However,
just how humans go about finding security vulnerabilities
is not well understood, in part because it is hard to carry
out large-scale controlled experiments. CTFs provide an
opportunity to study security practice in a controlled en-
vironment. In the future, we would like to use a record-
replay system to record the actions of players for later
study. Such data collection would allow us to understand
how strong players do their work, examine weaker play-
ers’ behavior in order to help them improve, and under-
stand more about the underlying vulnerabilities and how
players find and exploit them. We believe this research
has the potential to not only improve cybersecurity ed-
ucation but also generate insights that can be applied to
improving automated bug-finding tools as well.
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8 Related Work

Automatic problem generation for educational assess-
ment is an active research area [14, 18, 17, 15], especially
with the rise of online education and computer based
learning. Most prior work focuses on more traditional
educational environments, but some work has been done
in applying these ideas to computer security and CTFs in
particular.

We are not the first to recognize the value of automat-
ically generating CTF challenges. We are, however, the
first to be able to inject bugs into existing programs in-
stead of using substitution-based approaches or domain
specific languages. Previous approaches give the chal-
lenge author more control over the generated challenge
in exchange for limiting the diversity of the challenges
generated per template.

The first work in automatic challenge generation was
done by Burket et al [7]. Their event, picoCTF [4], is tar-
geted at middle and high school students, so the difficulty
must be low. Because of this, they focus on challenges
in categories other than memory corruption attacks. For
example, they might automatically change the key of a
simple cipher on a per-team basis.

Their competition also has a cash prize, and thus
cheating is a real threat. Therefore, their work focuses on
catching teams who are sharing answers. Their approach
is to template the challenges and then use a system to
automatically fill out the templates on a per team basis
with a unique flag and other per team parameters. An-
other artifact of the cash prize is that they need to ensure
a consistent difficulty between the generated challenges.

Building on the work by Burket et al, Gábor Szarka
developed Blinker [19], a domain specific language to
describe challenges. The majority of the changes from
the previous work is a focus on binary challenges using
a custom LLVM toolchain. Another tool Blinker pro-
vides is an automation framework for creating network
forensics challenges. Currently, the author is running an
online capture the flag event using his framework. There
have been no published results for this event as of the
writing of this paper.

Pewny and Holz created a similar system to
LAVA called EvilCoder [16], which subverts attacker-
controlled data to remove security checks in source code.
Because EvilCoder uses a static approach, it does not
have the ability to easily generate triggering inputs to
prove the existence of its bugs. LAVA bugs come with
a triggering input and thus give the LAVA user a head
start in demonstrating their exploitability.

9 Conclusion

This paper introduced AutoCTF, a jeopardy-style com-
puter security competition employing automatically gen-
erated vulnerabilities. These synthetic bugs, injected us-
ing an extended version of the LAVA system, varied in
type, including controlled relative writes, read disclo-
sures, and stack pointer corruption abilities. Together,
these provided sufficient offensive power for exploita-
tion. Teams playing AutoCTF solved challenges involv-
ing both LAVA and manually injected bugs during the
competition, indicating a rough equivalence. AutoCTF
achieved considerable code reuse, with four buggy ver-
sions each of only two base programs. Half of the CTF
was completely auto-generated, making that portion very
inexpensive. Our experience suggests that, with some
work to reduce artifacts, and a better-set difficulty level,
AutoCTF might be run next time using only LAVA bugs,
dramatically reducing cost. In the future, we imagine
AutoCTF might be set up to run virtually without hu-
man intervention and provide an inexhaustible training
ground for those wanting to practice vulnerability dis-
covery and exploit development.
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